

Sample preparation of blood plasma or serum samples for GCTOF analysis

Version: 1

Edited by: Oliver Fiehn

Summary Reagents and Materials Protocol

Summary: This SOP describes sample extraction and sample preparation for primary metabolism profiling by gas chromatography / time of flight mass spectrometry (GCTOF)

Reagents and Materials:

Reagent/Material	Vendor	Stock Number
Centrifuge	Eppendorf	5415 D
Calibrated pipettes 1-200 µl and 100-1000µl		
Eppendorf tubes 1.5 mL, uncolored		Cat. No. 022363204
ThermoElectron Neslab RTE 740 cooling bath		
MiniVortexer	VWR	58816-121
Orbital Mixing Chilling/Heating Plate	Torrey Pines Scientific Instruments	
Speed vacuum concentration system	Labconco Centrivap cold trap	
Precision balance with accuracy ± 0.1mg		
2mL crimp vials with Target Micro-Serts		
Agilent Electronic crimper and decapper		
Acetonitrile LCMS quality	JT Baker #9829-02	
Isopropanol HPLC solvent	JT Baker #9095-02	
pH paper 5-10	EMD Chem. Inc. Gibbstown NJ 08027	
Nitrogen line with pipette tip		
Methoxyamine hydrochloride [MeOX]	Aldrich: Cat. No. 226904	
Pyridine	Acros Organics	Cat. No. 270970
N-methyl-N-(trimethylsilyl)-trifluoroactamide	Aldrich	Cat. No. 394866
[MSTFA]		
FAME markers (refer to FAME marker SOP for		
preparation)		

Protocol:

Starting material:

Plasma/serum: 30 µl sample volume or aliquot

1. Preparation of extraction mix before experiment:

- 1. Check pH of acetonitrile and isopropanol (pH7) using wetted pH paper
- 2. Acetonitrile, isopropanol and water are mixed in volumes in proportion 3:3:2
- 3. Rinse the extraction solution mix for 5 min with nitrogen with small bubbles. Make sure that the nitrogen line was flushed out of air before using it for degassing the extraction solvent solution

2. Sample Preparation:

- 1. Switch on bath to pre-cool at -20° C ($\pm 2^{\circ}$ C validity temperature range)
- 2. Gently rotate or aspirate the blood samples for about 10s to obtain a homogenised sample.
- 3. Aliquot 30µl of plasma sample to a 1.0 mL extraction solution. The extraction solution has to be pre-chilled using the ThermoElectron Neslab RTE 740 cooling bath set to -20°C.
- 4. Vortex the sample for about 10s and shake for 5 min at 4°C using the Orbital Mixing Chilling/Heating Plate. If you are using more than one sample, keep the rest of the sample on ice (chilled at <0°C with sodium chloride).
- 5. Centrifuge samples for 2min at 14000 rcf using the centrifuge Eppendorf 5415 D.
- 6. Aliquot two $450\mu L$ portions of the supernatant. One for analysis and one for a backup sample. Store the backup aliquot in -20°C freezer.
- 7. Evaporate one 450µL aliquots of the sample in the Labconco Centrivap cold trap concentrator to complete dryness.
- 8. The dried aliquot is then re-suspended with 450 µL 50% acetonitrile (degassed as given above).
- 9. Centrifuged for 2 min at 14000 rcf using the centrifuge Eppendorf 5415.
- 10. Remove supernatant to a new Eppendorf tube.
- 11. Evaporate the supernatant to dryness in the Labconco Centrivap cold trap concentrator.
- 12. Submit to derivatization.

3. Derivatization

- Prepare 40mg/mL MeOX solution in pyridine. Weigh out methoxyamine hydrochloride in 1.5mL Eppendorf tube on balance and add appropriate amount of pyridine.
- Vortex MeOX solution and sonicate at 60°C for 15 minutes to dissolve.
- \bullet Add 10 μL of 40mg/mL Methoxyamine hydrochloride [MeOX] solution to each dried sample and standard
- Shake at maximum speed at 30°C for 1.5 hours.
- To 1mL of MSTFA and add 10 µL of FAME marker. Vortex for 10sec.
- Add 91 μL of MSTFA + FAME mixture to each sample and standard. Cap immediately.
- Shake at maximum speed at 37 °C
- Transfer contents to glass vials with micro-serts inserted and cap immediately.
- Submit to GCTOF MS analysis

4. Quality assurance

- For each sequence of sample extractions, perform one blank negative control extraction by applying the total procedure (i.e. all materials and plastic ware) without biological sample.
- Use one commercial plasma/serum pool sample per 10 authentic subject samples as control. If no suitable commercial blood sample is available, prepare a large pool sample during the

thawing/mixing step by aliquoting 100 ul per 1 ml plasma sample, and aliquot such pool sample for 1 pool extract per 10 authentic subject samples.

• Prepare at least one NIST plasma extract in the same manner

DISPOSAL OF WASTE: Collect all chemicals in appropriate bottles and follow the disposal rules. Collect residual plasma / serum samples in specifically designed red 'biohazard' waste bags.

References:

Fiehn O, Kind T (2006) Metabolite profiling in blood plasma. In: Metabolomics: Methods and Protocols. Weckwerth W (ed.), Humana Press, Totowa NJ