

Retinal Vascular Permeability

Version: 1

Replaced by version: N/A Edited by: David A. Antonetti

(note that the following list should be linked to the appropriate location.)

Summary

Reagents and Materials

Protocol

Reagent Preparation

Reagent 1

Reagent 2

Reagent 3

Summary: The vascular permeability is quantified by measuring albumin leakage form blood vessels into the retina. Fluorescent dye (FITC-BSA) is used to measure the breakdown in blood-retinal barrier to be detected when increased vessel leakage is extravasated into the interstitial space.

Reagents and Materials:

Reagent/Material	Vendor	Stock Number
Ketamine	Hospira	0409-2051-05
Xylazine	VetOne	510004
Heparinized micro-cuvette	Sarstedt	Microvette 300 LH 20.1309.100
0.3 c.c. insulin syringe (31-gauge x 5/16")	Becton Dickinson	328440
1 c.c. syringe with ½" 27-gauge needle	Becton Dickinson	309623
FITC-BSA (albumin-fluorescein isothiocyanate	Sigma	A9771
conjugate, bovine)		
EZ Clip wound closure	Braintree Scientific	EZC KIT
Blunt end needle (22-gauge x ½")	Weller	Kahnetics KDS2212P
Saline	Baxter	2B1324X
Triton-PBS (1%)	Sigma	X100
Microcentrifuge tubes	Denville	C2170
384-well microplate	Greiner	Bio-One 781096

Protocol:

- 1. Weigh animal and record body weight for anesthetic and dye injections
- 2. Anesthetize animal with ketamine/xylazine mixture
- 3. Make an incision on skin inside of the hind leg and carefully tear away the membranes to isolate the femoral vein
- 4. Inject FITC-BSA into the femoral vein at 2 μ l/g body weight (equal to 200 mg/kg body weight) using a 31-gauge 0.3 c.c. insulin syringe (vortex FITC-BSA before use)
- 5. Apply pressure on the injection site with a sterile gauze or cotton swab to stop bleeding
- 6. Staple the incision site and allow FITC-BSA to circulate for 2 hours

- 7. Anesthetize the animal again with ketamine/xylazine
- 8. Open the abdomen and draw 0.3 ml blood from the vena cava with a 27-gauge 1 c.c. syringe
- 9. Remove needle and expel blood into a heparinized micro-cuvette
- 10. Mix blood sample by gently reversing the tube several times and keep on ice
- 11. Open the chest cavity, cannulate the heart with a blunt end 22-gauge needle into the left ventricle and incise right atrium to release pressure
- 12. Perfuse with saline (warmed to 37°C) at 20 ml/min via the left ventricle for 2 minutes
- 13. Harvest the retina and place in a pre-weighed microcentrifuge tube. Rinse the harvest tools between samples to avoid cross contamination
- 14. Centrifuge the blood sample at 2,000 x g at 20°C for 15 minutes to separate plasma
- 15. Transfer the plasma to a new microcentrifuge tube and store at -80°C
- 16. Dry the retina samples with a Speed-Vac overnight
- 17. Weigh the microcentrifuge tube containing the dry retina to obtain the dry retina weight
- 18. Add 100 μ l of 1% Triton-PBS to each retina and shake overnight to extract FITC-BSA
- 19. Vortex briefly, centrifuge the microcentrifuge tubes at 17,000 x g for 30 minutes and transfer supernatant to a new microcentrifuge tube
- 20. Dilute the plasma samples with 1% Triton-PBS
- 21. Dilute the stock FITC-BSA (100 mg/ml) with 1% Triton-PBS and make serial dilutions to obtain the FITC-BSA standards
- 22. Measure the standards (0.156 to 10 μ g/ml), retina extract and diluted (1:900) plasma samples (20 μ l/well, triplicate) in a 384-well black/clear bottom plate with a fluorescent plate reader (excitation 488 nm, emission 520 nm)
- 23. Calculate the FITC-BSA concentration of each sample with the standard curve

NOTE: The auto-fluorescence background of the retina from animal without FITC-BSA injection should be subtracted for the permeability calculation. Additional tip that improves efficiency.

Reagent Preparation:

Reagent 1
Reagent 2
Reagent 3

Reagent 1:

Ketamine/xylazine (90 and 10 mg/ml)

Procedure: Add 0.5 ml xylazine (100 mg/ml) to 4.5 ml ketamine (100 mg/ml)

Reagent 2:

FITC-BSA (100 mg/ml)

Procedure: Dissolve 1 g FITC-BSA in 10 ml sterile PBS, aliquots stored at -80°C and

warmed to 37°C before use

Reagent 3:

Triton-PBS (1%)

Procedure: Dissolve 1 ml Triton X-100 in 100 ml PBS